Lesson 1 Practice Problems

Problem 1

- a. Is a temperature of -11 degrees warmer or colder than a temperature of -15 degrees?
- b. Is an elevation of -10 feet closer or farther from the surface of the ocean than an elevation of -8
- c. It was 8 degrees at nightfall. The temperature dropped 10 degrees by midnight. What was the temperature at midnight?
- d. A diver is 25 feet below sea level. After he swims up 15 feet toward the surface, what is his elevation?

Possible Solutions

- a. Warmer
- b. Farther
- c. -2 degrees
- d. -10 feet or 10 feet below sea level

Problem 2

- a. A whale is at the surface of the ocean to breathe. What is the whale's elevation?
- b. The whale swims down 300 feet to feed. What is the whale's elevation now?
- c. The whale swims down 150 more feet more. What is the whale's elevation now?
- d. Plot each of the three elevations as a point on a vertical number line. Label each point with its numeric value.

Possible Solutions

- a. 0. (Sea level is 0 feet above or below sea level.)
- b. -300 feet. (The whale is 300 feet below sea level.)
- c. -450 feet. (The whale was 300 feet below sea level, and now it is an additional 150 feet below sea level.)
- d. A number line with 0, -300, and -450 marked.

Problem 3

From Grade 6, Unit 6, Lesson 5

Explain how to calculate a number that is equal to $\frac{2.1}{1.5}$.

Possible Solutions

Answers vary. Sample response: $\frac{2.1}{1.5}$ means $2.1 \div 1.5$. This can be done by long division. (The question doesn't require it, but the quotient is 1.4.)

Problem 4

From Grade 6, Unit 6, Lesson 4

Write an equation to represent each situation and then solve the equation.

- a. Andre drinks 15 ounces of water, which is $\frac{3}{5}$ of a bottle. How much does the bottle hold? Use x for the number of ounces of water the bottle holds.
- b. A bottle holds 15 ounces of water. Jada drank 8.5 ounces of water. How many ounces of water are left in the bottle? Use y for the number of ounces of water left in the bottle.
- c. A bottle holds z ounces of water. A second bottle holds 16 ounces, which is $\frac{8}{5}$ times as much water. How much does the first bottle hold?

Possible Solutions

- a. $\frac{3}{5}x = 15$. Solution: 25.
- b. y + 8.5 = 15. Solution: 6.5.
- c. $\frac{8}{5}z = 16$ Solution: 10. Equations equivalent to these are also acceptable.

Problem 5

From Grade 6, Unit 4, Lesson 13

A rectangle has an area of 24 square units and a side length of $2\frac{3}{4}$ units. Find the other side length of the rectangle. Show your reasoning.

$$8\frac{8}{11}$$
. Sample reasoning: $24 \div \frac{11}{4} = 24 \cdot \frac{4}{11} = \frac{96}{11} = 8\frac{8}{11}$.

Lesson 2 Practice Problems

Problem 1

For each number, name its opposite.

a. -5

d. 0.875

b. 28

e. 0

c. -10.4

f. -8,003

Possible Solutions

- a. 5
- b. -28
- c, 10.4
- d. -0.875
- e. 0
- f. 8,003

Problem 2

Plot the numbers -1.5, $\frac{3}{2}$, $-\frac{3}{2}$, and $-\frac{4}{3}$ on the number line. Label each point with its numeric value.

Lesson 2 Practice Problems

Problem 3

Plot the following points on a number line.

- · -1.5
- the opposite of -2

- the opposite of 0.5

Possible Solutions

Problem 4

From Grade 6, Unit 7, Lesson 1

- a. Represent each of these temperatures in degrees Fahrenheit with a positive or negative number.
 - i. 5 degrees above zero
 - ii. 3 degrees below zero
 - iii. 6 degrees above zero
 - iv. $2\frac{3}{4}$ degrees below zero
- b. Order the temperatures above from the coldest to the warmest.

Possible Solutions

- a. 5, -3, 6, $-2\frac{3}{4}$
- b. $-3, -2\frac{3}{4}, 5, 6$

Problem 5

From Grade 6, Unit 6, Lesson 5

Solve each equation.

- a. $8x = \frac{2}{3}$ b. $1\frac{1}{2} = 2x$

c.
$$5x = \frac{2}{7}$$

d.
$$\frac{1}{4}x = 5$$

c.
$$5x = \frac{2}{7}$$

d. $\frac{1}{4}x = 5$
e. $\frac{1}{5} = \frac{2}{3}x$

Possible Solutions

a.
$$x = \frac{2}{24}$$
 (or equivalent)

b.
$$x = \frac{3}{4}$$
 (or equivalent)

c.
$$x = \frac{2}{35}$$
 (or equivalent)

d.
$$x = 20$$

e.
$$x = \frac{3}{10}$$
 (or equivalent)

Problem 6

From Grade 6, Unit 6, Lesson 5

Write the solution to each equation as a fraction and as a decimal.

a.
$$2x = 3$$

b.
$$5y = 3$$

c.
$$0.3z = 0.009$$

Possible Solutions

a.
$$x = \frac{3}{2}$$
 or $x = 1.5$

b.
$$y = \frac{3}{5}$$
 or $y = 0.6$

c.
$$z = \frac{0.009}{0.3}$$
 or $z = 0.03$ or $z = \frac{3}{100}$

Problem 7

From Grade 6, Unit 3, Lesson 4

There are 15.24 centimeters in 6 inches.

- a. How many centimeters are in 1 foot?
- b. How many centimeters are in 1 yard?

Lesson 2 Practice Problems

- a. 30.48 centimeters
- b. 91.44 centimeters

Lesson 3 Practice Problems

Problem 1

Decide whether each inequality statement is true or false. Explain your reasoning.

- a. -5 > 2
- b. 3 > -8
- c. -12 > -15
- d. -12.5 > -12

Possible Solutions

- a. False, -5 is to the left of 2.
- b. True, 3 is to the right of -8.
- c. True, -12 is to the right of -15.
- d. False, -12.5 is to the left of -12.

Problem 2

Here is a true statement: -8.7 < -8.4. Select **all** of the statements that are equivalent to -8.7 < -8.4.

- A. -8.7 is further to the right on the number line than -8.4.
- B. -8.7 is further to the left on the number line than -8.4.
- C. -8.7 is less than -8.4.
- D. -8.7 is greater than -8.4.
- E. -8.4 is less than -8.7.
- F. -8.4 is greater than -8.7.

Possible Solutions

B, C, F

Problem 3

From Grade 6, Unit 7, Lesson 4

Lesson 3 Practice Problems

The table shows five states and the lowest point in each state.

state	lowest elevation (feet)
California	-282
Colorado	3350
Louisiana	-8
New Mexico	2842
Wyoming	3099

Put the states in order by their lowest elevation, from least to greatest.

Possible Solutions

California, Louisiana, New Mexico, Wyoming, Colorado

Problem 4

From Grade 6, Unit 7, Lesson 2

Plot each of the following numbers on the number line. Label each point with its numeric value.

$$0.4, -1.5, -1\frac{7}{10}, -\frac{11}{10}$$

Possible Solutions

A correct solution has four points plotted in the following order from left to right: $-1\frac{7}{10}$, -1.5, $-\frac{11}{10}$ (between -2 and -1), 0.4 (between 0 and 1).

Problem 5

From Grade 6, Unit 6, Lesson 6

Each lap around the track is 400 meters.

a. How many meters does someone run if they run:

2 laps?

5 lans?

x laps?

- b. If Noah ran 14 laps, how many meters did he run?
- c. If Noah ran 7,600 meters, how many laps did he run?

Possible Solutions

- a. 800 meters ($400 \cdot 2 = 800$), 2,000 meters ($400 \cdot 5 = 2,000$), 400x meters or equivalent
- b. $5,600 (400 \cdot 14 = 5,600)$
- c. $19(7600 \div 400 = 19)$

Problem 6

From Grade 6, Unit 3, Lesson 16

A stadium can seat 16,000 people at full capacity.

- a. If there are 13,920 people in the stadium, what percentage of the capacity is filled? Explain or show your reasoning.
- b. What percentage of the capacity is not filled?

- a. 87% is filled, because $13,920 \div 16,000 = 0.87$.
- b. 13% remains, because 100 87 = 13.

Lesson 4 Practice Problems

Problem 1

Select **all** of the numbers that are *greater than -5*.

- A. 1.3
- в. -6
- c. -12
- D. $\frac{1}{7}$
- E. -1
- F. -4

Possible Solutions

A, D, E, F

Problem 2

Order these numbers from least to greatest: $\frac{1}{2}$, 0, 1, $-1\frac{1}{2}$, $-\frac{1}{2}$, -1

Possible Solutions

$$-1\frac{1}{2}$$
, -1 , $-\frac{1}{2}$, 0 , $\frac{1}{2}$, 1

Problem 3

Here are the boiling points of certain elements in degrees Celsius:

- Argon: -185.8
- Chlorine: -34
- Fluorine: -188.1
- Hydrogen: -252.87
- Krypton: -153.2

List the elements from least to greatest boiling points.

Possible Solutions

Hydrogen, fluorine, argon, krypton, chlorine

Problem 4

From Grade 6, Unit 7, Lesson 2

Explain why zero is considered its own opposite.

Possible Solutions

Answer vary. Sample response: Opposites are equally distant from 0. Since 0 is the only number that is 0 units from 0, it has to be its own opposite. 0+0=0.

Problem 5

From Grade 6, Unit 6, Lesson 9

Explain how to make these calculations mentally.

a.
$$99 + 54$$

Possible Solutions

Answers vary. Sample responses:

- a. 153; this is one less than 100 + 54 = 154.
- b. 145; this is one more than 244 100 = 144.
- c. 594; this is one 6 short of 100 sixes or 600.
- d. 1485; this is one 15 short of 100 fifteens or 1500.

Problem 6

From Grade 6, Unit 4, Lesson 11

Find the quotients.

a.
$$\frac{1}{2} \div 2$$

b.
$$2 \div 2$$

c.
$$\frac{1}{2} \div \frac{1}{2}$$

Lesson 4 Practice Problems

d.
$$\frac{38}{79} \div \frac{38}{79}$$

Possible Solutions

- a. $\frac{1}{4}$
- b. ¹1
- c. 1
- d. 1

Problem 7

From Grade 6, Unit 3, Lesson 4

Over several months, the weight of a baby measured in pounds doubles. Does its weight measured in kilograms also double? Explain.

Possible Solutions

Yes. Explanations vary. Sample explanation: The weight itself doubles, so any measurement of the weight using the same units will also double. We can also see that by saying if the weight is x pounds, then double that weight would be 2x pounds. The weight in kilograms will be $x \div 2.2$, and the double weight will be $(2x) \div 2.2$ or $2(x \div 2.2)$, which is also double.

Lesson 5 Practice Problems

Problem 1

Write a positive or negative number to represent each change in the high temperature.

- a. Tuesday's high temperature was 4 degrees less than Monday's high temperature.
- b. Wednesday's high temperature was 3.5 degrees less than Tuesday's high temperature.
- c. Thursday's high temperature was 6.5 degrees more than Wednesday's high temperature.
- d. Friday's high temperature was 2 degrees less than Thursday's high temperature.

Possible Solutions

- a. -4
- b. -3.5
- c. +6.5 or 6.5
- d. -2

Problem 2

Decide which of the following quantities can be represented by a positive number and which can be represented by a negative number. Give an example of a quantity with the opposite sign in the same situation.

- a. Tyler's puppy gained 5 pounds.
- b. The aquarium leaked 2 gallons of water.
- c. Andre received a gift of \$10.
- d. Kiran gave a gift of \$10.
- e. A climber descended 550 feet.

Possible Solutions

Answers vary. Sample responses:

- a. Positive. Tyler's puppy lost 5 pounds.
- b. Negative. 2 gallons of water was added to the aquarium.
- c. Positive. Andre gave a gift of \$10.
- d. Negative. Kiran received a gift of \$10.

Lesson 5 Practice Problems

e. Negative. A climber ascended 550 feet.

Problem 3

Make up a situation where a quantity is changing.

- a. Explain what it means to have a negative change.
- b. Explain what it means to have a positive change.
- c. Give an example of each.

Possible Solutions

Answers vary. Sample response: They were selling candy at the concession stand.

- a. When they sell candy, the change is negative.
- b. When they get more candy to sell, the change is positive.
- c. For example, in one hour the number of packages of candy changed by -5 because they sold 5, and in the next hour it changed by 20 because they got 20 more to sell.

Problem 4

From Grade 6, Unit 7, Lesson 2

- a. On the number line, label the points that are 4 units away from 0.
- b. If you fold the number line so that a vertical crease goes through 0, the points you label would match up. Explain why this happens.
- c. On the number line, label the points that are $\frac{5}{2}$ units from 0. What is the distance between these points?

- a. On the number line, -4 and 4 should be labeled.
- b. The two points match up because they are opposites; they are the same distance from 0.
- c. 2.5 and -2.5 should be labeled. The distance between them is 5 units, because each one is 2.5 units away from 0.

Problem 5

From Grade 6, Unit 6, Lesson 12

Evaluate each expression.

a.
$$2^3 \cdot 3$$

b.
$$\frac{4^2}{2}$$

d.
$$6^2 \div 4$$

e.
$$2^3 - 2^3$$

f.
$$10^2 + 5^2$$

- a. 24
- b. 8
- c. 3
- d. 9
- e. 6
- f. 125

Lesson 6 Practice Problems

Problem 1

On the number line, plot and label all numbers with an absolute value of $\frac{3}{2}$.

Possible Solutions

Points $\frac{3}{2}$ and $\frac{-3}{2}$, $1\frac{1}{2}$ and $-1\frac{1}{2}$, or 1.5 and -1.5 should be plotted.

Problem 2

The temperature at dawn is $6^{\circ}C$ away from 0. Select **all** the temperatures that are possible.

- A. -12°C
- в. -6°С
- c. 0°C
- D. 6°C
- E. 12°C

Possible Solutions

B, D

Problem 3

Order from least to greatest:

|-2.7|

0

1.3

|-1|

2

Possible Solutions

0 |-1| 1.3 2 |-2.7|

Lesson 6 Practice Problems

Problem 4

From Grade 6, Unit 6, Lesson 16

Elena donates some money to charity whenever she earns money as a babysitter. The table shows how much money, d, she donates for different amounts of money, m, that she earns.

d	4.44	1.80	3.12	3.60	2.16
m	37	15	26	30	18

- a. What percent of her income does Elena donate to charity? Explain or show your work.
- b. Which quantity, m or d, would be the better choice for the dependent variable in an equation describing the relationship between m and d? Explain your reasoning.
- c. Use your choice from the second question to write an equation that relates m and d.

Possible Solutions

- a. Elena donates 12% of her income to charity. Sample reasoning: We want to know what percent of 30 is 3.6, so we can write 30p=3.6. To solve this, divide 3.6 by 30, which is 0.12. So 12% of 30 is 3.6.
- b. Answers vary. Sample response: Since the amount of the donation depends on how much money she earns, d would be better as the dependent variable. If she wants to donate a certain amount and needs to figure out how much she needs to earn to achieve that donation, then m would be better as the dependent variable.
- c. d=.12m or equivalent $m=\frac{100}{12}d$ or $m=d\div.12$ or equivalent

Problem 5

From Grade 6, Unit 6, Lesson 12

How many times larger is the first number in the pair than the second?

- a. 3^4 is _____ times larger than 3^3 .
- b. 5^3 is _____ times larger than 5^2 .
- c. 7^{10} is _____ times larger than 7^8 .
- d. 17^6 is _____ times larger than 17^4 .
- e. 5^{10} is _____ times larger than 5^4 .

Possible Solutions

a. 3

- b. 5
- c. 7^2 or 49
- d. 17^2 or 289
- e. 5⁶ or 15,625

Problem 6

From Grade 6, Unit 5, Lesson 11

Lin's family needs to travel 325 miles to reach her grandmother's house.

- a. At 26 miles, what percentage of the trip's distance have they completed?
- b. How far have they traveled when they have completed 72% of the trip's distance?
- c. At 377 miles, what percentage of the trip's distance have they completed?

- a. 8% of the trip, because $26 \div 325 = 0.08$.
- b. 234 miles, because $0.72 \cdot 325 = 234$.
- c. 116% of the trip, because $377 \div 325 = 1.16$.

Lesson 7 Practice Problems

Problem 1

In the context of elevation, what would |-7| feet mean?

Possible Solutions

The vertical distance between the point at -7 feet and sea level (0 feet).

Problem 2

Match the statements written in English with the mathematical statements.

- A. The number -4 is a distance of 4 units away from 0 on the number line.
- B. The number -63 is more than 4 units away from 0 on the number line.
- C. The number 4 is greater than the number -4.
- D. The numbers 4 and -4 are the same distance away from 0 on the number line.
- E. The number -63 is less than the number 4.
- F. The number -63 is further away from 0 than the number 4 on the number line.

- 1. |-63| > 4
- 2. -63 < 4
- |-63| > |4|
- 4. |-4| = 4
- 5. 4 > -4
- 6. |4| = |-4|

- A. 4
- B. 1
- C. 5
- D. 6
- E. 2
- F. 3

Problem 3

Compare each pair of expressions using >, <, or =.

Possible Solutions

- a. -32 < 15 because 15 is further right on the number line.
- b. |-32| > |15| because -32 is further from zero than 15.
- c. 5 > -5 because 5 is further right on the number line than -5.
- d. |5| = |-5|, because 5 and -5 are the same distance away from zero.
- e. 2 > -17 because 2 is further right on the number line than -17.
- f. 2 < |-17| because -17 is more than 2 units away from zero.
- g. |-27| < |-45| because -45 is further from zero than -27.
- h. |-27| > -45 because 27 > -45.

Problem 4

From Grade 6, Unit 7, Lesson 5

Mai received and spent money in the following ways last month. For each example, write a signed number to represent the change in money from her perspective.

- a. Her grandmother gave her \$25 in a birthday card.
- b. She earned \$14 dollars babysitting.
- c. She spent \$10 on a ticket to the concert.
- d. She donated \$3 to a local charity
- e. She got \$2 interest on money that was in her savings account.

- a. +25 or 25
- b. +14 or 14
- c. -10
- d. -3
- e. +2 or 2

Lesson 7 Practice Problems

Problem 5

From Grade 6, Unit 7, Lesson 1

Here are the lowest temperatures recorded in the last 2 centuries for some US cities. Temperatures are in degrees Fahrenheit.

- Death Valley, CA was -45 in January of 1937.
- Danbury, CT was -37 in February of 1943.
- Monticello, FL was -2 in February of 1899.
- East Saint Louis, IL was -36 in January of 1999.
- Greenville, GA was -17 in January of 1940.
- a. Which of these states has the lowest record temperature?
- b. Which state has a lower record temperature, FL or GA?
- c. Which state has a lower record temperature, CT or IL?
- d. How many more degrees colder is the record temperature for GA than for FL?

Possible Solutions

- a. CA
- b. GA
- c. CT
- d. 15 degrees

Problem 6

From Grade 6, Unit 5, Lesson 13

Find the quotients.

- a. $0.024 \div 0.015$
- b. $0.24 \div 0.015$
- c. $0.024 \div 0.15$
- d. $24 \div 15$

- a. 1.4
- b. 14
- c. 0.14
- d. 1.4

Lesson 8 Practice Problems

Problem 1

At the book sale, all books cost less than \$5.

- a. What is the most expensive a book could be?
- b. Write an inequality to represent costs of books at the sale.
- c. Draw a number line to represent the inequality.

Possible Solutions

- a. \$4.99
- b. Answer varies. Sample response: If p is the price of a book, then p < 5.
- c. The number line has an open circle and an arrow drawn to the left starting with 5.

Problem 2

Kiran started his homework before 7:00 p.m. and finished his homework after 8:00 p.m. Let hrepresent the number of hours Kiran worked on his homework.

Decide if each statement it is definitely true, definitely not true, or possibly true. Explain your reasoning.

- a. h > 1
- b. h > 2
- c. h < 1
- d. h < 2

- a. Definitely true. Kiran worked from 7:00 until 8:00 and some additional time.
- b. Possibly true. It is true if Kiran started his homework at 6:15 and stopped at 8:30. It could also be false if Kiran started his work at 6:45 and finished at 8:15.
- c. Definitely false. h > 1 is true.
- d. Possibly true. h > 2 might be true, but it might also be false.

Problem 3

From Grade 6, Unit 6, Lesson 14

Consider a rectangular prism with length 4 and width and height d.

- a. Find an expression for the volume of the prism in terms of d.
- b. Compute the volume of the prism when d=1, when d=2, and when $d=\frac{1}{2}$.

Possible Solutions

- a. $4d^2$
- b. When d=1, the volume is 4. When d=2, the volume is 16. When $d=\frac{1}{2}$, the volume is 1.

Problem 4

From Grade 6, Unit 7, Lesson 7

Match the mathematical statements with the statements written in English. All of these statements are true.

A.
$$|-12| > -15$$

B.
$$-15 < -12$$

C.
$$|-15| > |-12|$$

D.
$$|-12| = 12$$

E.
$$12 > -12$$

F.
$$|12| = |-12|$$

- 1. The number -15 is further away from 0 than the number -12 on the
- 2. The number -12 is a distance of 12 units away from 0 on the number
- 3. The distance between -12 and 0 on the number line is greater than
- 4. The numbers 12 and -12 are the same distance away from 0 on the number line.
- 5. The number -15 is less than the number -12.
- 6. The number 12 is greater than the number -12.

Possible Solutions

A. 3

Lesson 8 Practice Problems

- B. 5
- C. 1
- D. 2
- E. 6
- F. 4

Problem 5

From Grade 6, Unit 6, Lesson 11

Here are five sums. Use the distributive property to write each sum as a product with two factors.

a.
$$2a + 7a$$

b.
$$5z - 10$$

c.
$$c - 2c^2$$

d.
$$r+r+r+r$$

e.
$$2x - \frac{1}{2}$$

Possible Solutions

Answers vary. For examples:

- a. (2+7)a or 9a
- b. 5(z-2)
- c. c(1-2c)
- d. (1+1+1+1)r or 4r
- e. $2(x-\frac{1}{4})$ or $\frac{1}{2}(4x-1)$

Lesson 9 Practice Problems

Problem 1

- a. Select all numbers that are solutions to the inequality k > 5.
 - i. 4
 - ii. 5
 - iii. 6
 - iv. 5.2
 - v. 5.01
 - vi. 0.5
- b. Draw a number line to represent this inequality.

Possible Solutions

- a. 6, 5.2, 5.01
- b. The number line should show an open circle above the number 5 and an arrow pointing to the right.

Problem 2

A sign on the road says: "Speed limit, 60 miles per hour."

- a. Let s be the speed of a car. Write an inequality that matches the information on the sign.
- b. Draw a number line to represent the solutions to the inequality.
- c. Could 60 be a value of s? Explain your reasoning.

- a. s < 60 or s = 60, or equivalent
- b. The number line should show a closed circle at 60 and an arrow pointing to the left.
- c. Yes, 60 is the limit.

Lesson 9 Practice Problems

Problem 3

One day in Boston, MA, the high temperature was 60 degrees Fahrenheit, and the low temperature was 52 degrees.

- a. Write one or more inequalities to describe the temperatures ${\it T}$ that are between the high and low temperature on that day.
- b. Show the possible temperatures on a number line.

Possible Solutions

- a. 52 < T and T < 60 or equivalent
- b. A graph showing empty circles at 52 and 60 and all of the numbers between.

Problem 4

From Grade 6, Unit 7, Lesson 7

Select all the true statements.

A.
$$-5 < |-5|$$

B.
$$|-6| < -5$$

c.
$$|-6| < 3$$

D.
$$4 < |-7|$$

E.
$$|-7| < |-8|$$

Possible Solutions

A, D, E

Problem 5

From Grade 6, Unit 6, Lesson 15

Match each equation to its solution.

A.
$$x^4 = 81$$

B.
$$x^2 = 100$$

c.
$$x^3 = 64$$

D.
$$x^5 = 32$$

Possible Solutions

- A. 2
- B. 4
- C. 3
- D. 1

Problem 6

From Grade 6, Unit 3, Lesson 14

- a. The price of a cell phone is usually \$250. Elena's mom buys one of these cell phones for \$150. What percentage of the usual price did she pay?
- b. Elena's dad buys another type of cell phone that also usually sells for \$250. He pays 75% of the usual price. How much did he pay?

Possible Solutions

- a. 60%
- b. \$187.50

Sample reasoning:

number	percentage
250 .	100
10	4
150	60
62.5	25
187.5	75